Tugas Besar (Kontrol Perangkap Binatang)


1. Pendahuluan[Kembali]

Kontrol perangkap binatang elektronika merupakan salah satu solusi inovatif yang dirancang untuk menangani masalah binatang liar atau hama secara efektif dan humanis. Dengan memanfaatkan perangkat elektronik, perangkap ini mampu mendeteksi, menangkap, dan mengelola binatang secara otomatis, sehingga mengurangi interaksi langsung manusia dengan hewan tersebut.
Perangkap binatang elektronika tidak hanya meningkatkan efisiensi dalam pengendalian hama, tetapi juga memperhatikan aspek keselamatan dan kesejahteraan hewan. Dengan sistem yang canggih, perangkap ini dapat mengurangi risiko cedera pada hewan yang terjebak, serta memungkinkan penanganan yang lebih baik dan responsif terhadap kondisi lingkungan.
Pentingnya penerapan teknologi ini juga sejalan dengan kebutuhan untuk menjaga ekosistem yang seimbang, serta mengurangi dampak negatif yang ditimbulkan oleh populasi hewan yang tidak terkontrol. Dalam pengembangan lebih lanjut, kontrol perangkap binatang elektronika diharapkan dapat memberikan solusi yang berkelanjutan dan ramah lingkungan dalam manajemen fauna urban dan pertanian.

2. Tujuan[Kembali]

  • Menyelesaikan tugas besar untuk mata kuliah Elektronika yang diberikan oleh Bapak Darwison,M.T.
  • Untuk mengaplikasikan berbagai komponen elektronika dalam membuat perangkat binatang di rumah dimana dalam kasus kali ini adalah tikus
  • Dapat merancang simulasi kontrol perangkap binatang otomatis
  • Memudahkan menangkap binatang

3. Alat dan Bahan[Kembali]

   A. Alat   

  • Dc Voltmeter (Instrument)

Sebuah voltmeter DC mengukur beda potensial antara dua titik dalam sebuah rangkaian DC kemudian dihubungkan paralel dengan sebuah sumber tegangan atau komponen rangkaian.
      • Ampermeter



        Berfungsi untuk mengukur kuat arus yang mengalir pada rangkaian

      • Baterai 12V


Berfungsi sebagai sumber tegangan pada rangkaian.

Spesifikasi: 

    Input voltage: ac 100~240v / dc 10~30v

    Output voltage: dc 1~35v

    Max. Input current: dc 14a

    Charging current: 0.1~10a

    Discharging current: 0.1~1.0a

    Balance current: 1.5a/cell max

    Max. Discharging power: 15w

    Max. Charging power: ac 100w / dc 250w

    Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s

    Ukuran: 126x115x49mm

    Berat: 460gr

 


    B. Bahan 


        1. Resistor


Resistor adalah komponen dasar  elektronika  yang berfungsi menghambat/membatasi jumlah arus input atau arus yang mengalir masuk ke dalam satu rangkaian, dimana kemampuan resistor dalam membatasi arus masuk sesuai dengan spesifikasi resistor tersebut. Sesuai  dengan  namanya  resistor  bersifat  resistif  dan umumnya  terbuat  dari  bahan   karbon.



        2. Kapasitor



Kapasitor atau disebut juga dengan kondensator adalah komponen elektronika pasif yang dapat menyimpan energi atau muatan listrik dalam sementara waktu.


        3. Dioda

Dioda memiliki fungsi sebagai penyearah arus listrik. Fungsi dioda atau diode adalah mampu mengubah arus bolak-balik (AC) menjadi arus yang searah (DC). Dioda memiliki fungsi sebagai penyetabil tegangan.


        4 .Transistor NPN

Merupakan transistor tipe NPN yang digunakan untuk switching agar mengaktifkan kontak relay dan relay tersebut akan memberikan kontak pada motor DC dan output lainnya.

Spesifikasi :

  • Bi-Polar Transistor
  • DC Current Gain (hFE) is 800 maximum
  • Continuous Collector current (IC) is 100mA
  • Emitter Base Voltage (VBE) is > 0.6V
  • Base Current(IB) is 5mA maximum

        5.Transistor JFET



        6.Op Amp



Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.

  • pin out:



    spesifikasi:

 
  • Komponen Input

        7. Vibration Sensor

Sensor Vibration berfungsi sebagai alat untuk mengubah besar sinyal getaran fisik menjadi sinyal analog. Dari sana juga akan terlihat besaran listrik dan berbentuk rupa tegangan listrik yang ada.

 
 

        8. Touch Sensor

Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.



grafik sensor sentuh


        9. Sensor Infra Red 

 

 

 

Sistem sensor infra merah pada dasarnya menggunakan infra merah sebagai media untuk komunikasi data antara receiver dan transmitter. Sistem akan bekerja jika sinar infra merah yang dipancarkan terhalang oleh suatu benda yang mengakibatkan sinar infra merah tersebut tidak dapat terdeteksi oleh penerima.

Grafik Respon Sensor Infrared 

                                                Gambar 4. Grafik respon sensor infrared

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.


        10. Sensor PIR 

Sensor PIR adalah sensor yang lazim digunakan untuk mendeteksi pergerakan objek di sekitarnya. Sensor ini memiliki desain yang kompak dan ringkas, dan sangat mudah dalam penggunaannya. Sensor PIR hanya membutuhkan daya yang kecil untuk bekerja, dan dapat mendeteksi gerakan dalam jarak yang lumayan jauh. Selain itu, output yang berupa kondisi 0 dan 1 memudahkan pengguna dalam merancang logika program pada projek yang menggunakan sensor jenis ini.



        11. Sound Jarak 


GP2D12 merupakan salah satu sensor jarak dengan keluaran tegangan  analog. Jarak yang bisa dideteksi GP2D12 mulai dari 8cm sampai 80cm,  sedangkan tegangan yang dikeluarkan adalah mulai dari 2,6 Vdc dan terus turun sampai sekitar 0,5 Vdc, sehingga jarak berbanding terbalik dengan tegangan, jadi  tegangan akan semakin tinggi pada saat jarak semakin dekat.


Konfigurasi Pin:

Spesifikasi:



Grafik Respon

  

  


        12. Sound Sensor

Sensor suara adalah sebuah alat yang mampu mengubah gelombang sinusioda suara menjadi gelombang sinus energi listrik. Sensor suara ini digunakan untuk menghantarkan listrik berdasarkan pendeteksian suara untuk menghidupkan perangkat yang dihubungkan.

     

        13. Logictoggle



Toggle switch adalah saklar sederhana yang mudah digunakan, toggle switch banyak digunakan pada peralatan elektronika. Sakelar toggle ini sangat bermanfaat pada perakitan alat, karena dapat membuat tampilan alat menjadi lebih enak dipandang. Ukuran toggle switch yang kecil membuat toggle switch menjadi pilihan yang banyak digunakan pada perakitan alat terutama pada tempat yang relatif kecil.


  • Komponen Output

        14. Lampu Led 

LED merupakan kependekan dari Light Emitting Diode, yakni salah satu dari banyak jenis perangkat semikonduktor yang mengeluarkan cahaya ketika arus listrik melewatinya.


        15. Buzzer


Buzzer Elektronika adalah sebuah komponen elektronika yang dapat menghasilkan getaran suara berupa gelombang bunyi. Buzzer elektronika akan menghasilkan getaran suara ketika diberikan sejumlah tegangan listrik dengan taraf tertentu sesuai dengan spesifikasi bentuk dan ukuran buzzer elektronika itu sendiri.


        16. Motor



Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat elektronik dan listrik yang menggunakan sumber listrik DC seperti vibrator ponsel, kipas DC dan bor listrik DC.


  

        17. Ground


Ground adalah titik yang dianggap sebagai titik kembalinya arus listrik arus searah atau titik kembalinya sinyal bolak-balik atau titik patokan (referensi) berbagai titik tegangan dan sinyal listrik di dalam rangkaian elektronika.



        18. Speaker
  • Speaker merupakan sebuah perangkat keras output yang berfungsi mengeluarkan hasil pemrosesan berupa audio/suara.


        19. Relay


  • Relay dapat berfungsi sebagai saklar pada rangkaian elektronika. Relay umumnya adalah tegangan input 5 VDC, 12 VDC atau 48 VDC. Untuk common dan NO NC umumnya 220 vac dengan arus kerja 10 A.

    • Konfigurasi pin Relay dihubungkan ke 5V
    • GND dihubungkan ke GND
    • IN1/Data dihubungkan ke pin 2

    Spesifikasi:



        20. Buffer


Voltage follwer memiliki impedansi yang sangat tinggi sehingga tidak membebani rangkaian pengumpan sinyal dibelakangnya. selain itu rangkaian op-amp ini memiliki impendansi output yang rendah yang membuatnya cocok dibebani oleh peranti berikutnya.

  • Resistor



Perhitungan untuk Resistor dengan 4 Gelang warna


Berdasarkan Kode Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.


4. Dasar Teori[Kembali]

1. Resistor

Resistor adalah komponen dasar elektronika yang selalu digunakan dalam setiap rangkaian elektronika karena bisa berfungsi sebagai pengatur atau untuk membatasi jumlah arus yang mengalir dalam suatu rangkaian. Dengan resistor, arus listrik dapat didistribusikan sesuai dengan kebutuhan. Sesuai dengan namanya resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Satuan resistansi dari suatu resistor disebut Ohm atau dilambangkan dengan simbol Ω (Omega).

Simbol Resistor :




Cara menghitung nilai resistor : 
a. Membaca Kode Warna Resistor 
b. Membaca Resistor SMD 
c. Menggunakan Multimeter Analog/Digital 

   4 Gelang Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

 5 Gelang Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

Rumus :


         -Jika rangkaian seri, maka :

        -Jika rangkaian paralel, maka :






2.  Dioda


Spesifikasi


Dioda adalah komponen yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Sebuah Dioda dibuat dengan menggabungkan dua bahan semi-konduktor tipe-P dan semi-konduktor tipe-N. Ketika dua bahan ini digabungkan, terbentuk lapisan kecil lain di antaranya yang disebut depletion layer. Ini karena lapisan tipe-P memiliki hole berlebih dan lapisan tipe-N memiliki elektron berlebih dan keduanya mencoba berdifusi satu sama lain membentuk penghambat resistansi tinggi antara kedua bahan seperti pada gambar di bawah ini. Lapisan penyumbatan ini disebut depletion layer.
 
Ketika tegangan positif diterapkan ke Anoda dan tegangan negatif diterapkan ke Katoda, dioda dikatakan dalam kondisi bias maju. Selama keadaan ini tegangan positif akan memompa lebih banyak hole ke daerah tipe-P dan tegangan negatif akan memompa lebih banyak elektron ke daerah tipe-N yang menyebabkan depletion layer hilang sehingga arus mengalir dari Anoda ke Katoda. Tegangan minimum yang diperlukan untuk membuat dioda bias maju disebut forward breakdown voltage.

Jika tegangan negatif diterapkan ke anoda dan tegangan positif diterapkan ke katoda, dioda dikatakan dalam kondisi bias terbalik. Selama keadaan ini tegangan negatif akan memompa lebih banyak elektron ke material tipe-P dan material tipe-N akan mendapatkan lebih banyak hole dari tegangan positif yang membuat depletion layer lebih besar dan dengan demikian tidak memungkinkan arus mengalir melaluinya. Kondisi ini hanya terjadi pada dioda yang ideal, kenyataannya arus yang kecil tetap dapat mengalir pada bias terbalik dioda.


Dioda dapat dibagi menjadi beberapa jenis:


1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
4. Dioda Photo yang berfungsi sebagai sensor cahaya.
5. Dioda Schottky yang berfungsi sebagai Pengendali.


Untuk menentukan arus zenner  berlaku persamaan:

Keterangan:


Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.


3. Transistor 


Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

3. Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.

Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor.

 

Rumus-rumus transistor:

Spesifikasi :

    • Bi-Polar Transistor
    • DC Current Gain (hFE) is 800 maximum
    • Continuous Collector current (IC) is 100mA
    • Emitter Base Voltage (VBE) is > 0.6V
    • Base Current(IB) is 5mA maximum

Konfigurasi Transistor

Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.


  • Transistor NPN


    Transistor merupakan salah satu komponen elektronika yang banyak sekali dipakai di dunia industri. Transistor yang umum dipakai memiliki 3 (tiga) metode kerja yaitu :

    a.Cut Off adalah kondisi dimana transistor tidak mengalirkan arus listrik.

    b.Saturasi adalah kondisi dimana transistor tepat mengalirkan arus listrik.

    c.Aktif adalah kondisi dimana transistor bisa disebut sebagai penguat.

    Dari 3 metode kerja pada transistor tersebut, dapat dijelaskan juga pada gambar  yang merupakan karakteristik transistor.


    Dari gambar, dapat dijelaskan kembali bahwa parameter – parameter pada transistor yaitu dapat dilihat pada penjelasan di bawah: 
     

    Jenis Nomor : Jumlah jenis perangkat merupakan nomor bagian individu yang diberikan ke perangkat. Nomor perangkat biasanya sesuai dengan JEDEC (Amerika) atau Pro-Elektron (Eropa). Ada juga sistem standar Jepang untuk penomoran pada transistor.

    Kasus : Memeriksa sambungan pin karena pin-pin tersebut tidak selalu standar. Beberapa jenis transistor mungkin memiliki sambungan pin dengan format EBC, sedangkan kadang-kadang sambungan pin dengan format ECB, dan ini dapat menyebabkan kebingungan dalam beberapa kasus.

    Bahan : Bahan yang digunakan untuk suatu perangkat sangat penting karena mempengaruhi persimpangan bias maju dan karakteristik lainnya. Bahan yang paling umum digunakan untuk transistor bipolar adalah silikon dan germanium.

    Polaritas : Polaritas pada perangkat sangat penting karena mendefinisikan polaritas bias dan pengoperasian pada perangkat. Dua tipe NPN dan PNP. NPN adalah jenis yang paling umum. Kedua tipe ini memiliki kecepatan yang lebih tinggi sebagai elektron. Ketika berjalan dalam konfigurasi emitorumum, sirkuit NPN akan menggunakan tegangan rel positif dan garis umum negatif, transistor PNP akan membutuhkan rel negatif dan tegangan umum positif.

    VCEO : Tegangan kolektor emiter dan bias terbuka.

    VCBO : Tegangan kolektor bias dan emiter terbuka.

    VEBO : Tegangan emiter bias dan kolektor terbuka.

    IC : Arus kolektor.

    ICM : Arus puncak kolektor.

    IBM : Arus puncak bias.

    PTOT : Disipasi daya total-ini biasanya untuk suhu sekitar25oC.  Ini adalah nilai maksimum dari daya yang didapat dengan aman.

    ICBO : Arus cut off kolektor bias.

    IEBO : Arus cut off emiter bias.

    hFE : Peningkatan arus.

    VCEsat : Tegangan saturasi kolektor emiter.

    VBEsat : Tegangan saturasi bias emiter.

    Cc : Kapasitas kolektor.

    Ce : Kapasitas emiter.

    Secara fungsinya transistor dapat berfungsi sebagai saklar, kondisi ini setara dengan kondisi transistor pada saat saturasi dan fungsi lain dari transistor adalah sebagai penguat sinyal yakni sama dengan kondisi transistor pada saat transistor dalam keadaan mode kerja aktif.

    Transistor BC547 merupakan transistor tipe NPN yang digunakan untuk switching agar mengaktifkan kontak relay dan relay tersebut akan memberikan kontak pada motor dc.

  • Transistor JFET


    FET adalah suatu semiconductor device seperti halnya bipolar transistor. Perbedaan utamanya adalah arus yang melalui device di-kontrol oleh tegangan. Sedangkan pada bipolar transistor, arus arus yang melalui device di-kontrol oleh arus.

    Apabila kita hubungkan tegangan bias dari gate ke source dengan polaritas seperti diperlihatkan pada gambar 11.2 (a), VGG = 1 Volt, maka akan menghasilkan tegangan gate-source VGS = -1 Volt. Sedangkan pada drain kita berikan tegangan supply (VDD) yang dapat diatur besarnya (variabel). Dengan mengatur VDD mulai dari nol sampai dengan nilai tertentu, maka akan dihasilkan kurva karakteristik drain, seperti diperlihatkan pada gambar 11.2 (b).




    Sebaliknya jika tegangan bias dari gate ke source (VGG) dapat diatur besarnya (variabel), sedangkan tegangan supply (VDD) yang konstan besarnya, maka magnitudo arus drain (ID) akan berkurang dengan pertambahan magnitudo dari VGS. Sehingga besarnya arus drain (ID) dikontrol oleh besarnya tegangan gate-source (VGS), sebagaimana diilustrasikan pada gambar 11.3.

  4. Op-Amp LM741


Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

Op-Amp memiliki beberapa karakteristik, di antaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

Rangkaian dasar Op-Amp


Op Amp IC 741 adalah sirkuit terpadu monolitik, yang terdiri dari Penguat Operasional tujuan umum. Ini pertama kali diproduksi oleh semikonduktor Fairchild pada tahun 1963. Angka 741 menunjukkan bahwa IC penguat operasional ini memiliki 7 pin fungsional, 4 pin yang mampu menerima input dan 1 pin output.

Op Amp IC 741 dapat memberikan penguatan tegangan tinggi dan dapat dioperasikan pada rentang tegangan yang luas, yang menjadikannya pilihan terbaik untuk digunakan dalam integrator, penguat penjumlahan, dan aplikasi umpan balik umum. Ini juga dilengkapi perlindungan hubung singkat dan sirkuit kompensasi frekuensi internal yang terpasang di dalamnya.

Konfigurasi PIN

Spesifikasi:

Respons karakteristik kurva I-O:


5. Battery

Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik (sebagai sumber tegangan). Pada umumnya baterai terdiri dari tiga komponen yang penting yaitu :


1. Batang karbon (C) sebagai anode (kutub positif baterai).
2. Seng (Zn) sebagai katode (kutub negatif baterai)
3. Amonium dioksida (NH4CI) sebagai larutan elektrolit (penghantar)

Terdapat dua jenis baterai yaitu :
1. Baterai Primer 
Baterai adalah baterai yang hanya dapat digunakan sekali, menggunakan reaksi kimia yang tidak dapat dibalik (irreversible reaction).  pada umumnya dijual adalah baterai yang bertegangan listrik 1,5 volt.

2. Baterai Sekunder
Baterai sekunder atau biasanya disebut rechargeable battery adalah baterai yang dapat di isi ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) biasanya digunakan pada telepon genggam.
Adapun salah satu persamaan menghitung tegangan adalah :

P = V x I
Keterangan :
P  = Daya (W)
V = Tegangan yang terukur (V)
I   = Arus yang terukur (I)

 

8. Sensor
        1. Vibration Sensor



Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:
   - Pembesaran sinyal getaran
   - Penyaringan sinyal getaran dari sinyal pengganggu.
   - Penguraian sinyal, dan lainnya.

Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
  - Sensor penyimpangan getaran (displacement transducer)
  - Sensor kecepatan getaran (velocity tranducer)
  - Sensor percepatam getaran (accelerometer).

Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
  - Jenis sinyal getaran
  -  Rentang frekuensi pengukuran
  -  Ukuran dan berat objek getaran.
  -  Sensitivitas sensor

Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
   - Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
     (power supply) dari luar, misalnya Velocity Transducer.
   - Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.

Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :



        2. Touch Sensor


Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya.Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik. Tubuh manusia memiliki Panca Indera yang berfungsi untuk berinteraksi dengan lingkungan di sekitarnya. Konsep yang sama juga diterapkan pada mesin atau perangkat elektronik/listrik agar dapat melakukan interaksi dengan lingkungan disekitarnya. Oleh karena itu, berbagai jenis sensor pun diciptakan untuk melakukan tugas tersebut. Salah satu sensor tersebut adalah Sensor Sentuh atau Touch Sensor.


Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Pengertian SENSOR SENTUH dan jenis-jenisnya (KAPASITIF DAN RESISTIF)

3. Infra red sensor


Sistem sensor infra merah pada dasarnya menggunakan infra merah sebagai media untuk komunikasi data antara receiver dan transmitter. Sistem akan bekerja jika sinar infra merah yang dipancarkan terhalang oleh suatu benda yang mengakibatkan sinar infra merah tersebut tidak dapat terdeteksi oleh penerima.Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

Prinsip kerja sensor infrared

Gambar Ilustrasi prinsip kerja sensor infrared

Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.

Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3.

Gambar 2. Rangkaian dasar sensor infrared common emitter yang menggunakan led infrared dan fototransistor 

Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:

Gambar 3. Keadaan Basis Mendapat Cahaya Infra Merah dan Berubah Menjadi Saklar (Switch Close) Secara Sesaat

Grafik Respon Sensor Infrared

Gambar 4. Grafik respon sensor infrared

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.


4. sensor PIR



Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.

Sensor PIR terdiri dari beberapa bagian yaitu:

a) Lensa Fresnel
Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

b) IR Filter
IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

c) Pyroelectric Sensor
Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32˚C, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

d) Amplifier
Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.

e) Komparator
Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.

Simulasi Gif kasar berikut menunjukkan bagaimana sensor PIR merespons manusia yang bergerak dan mengembangkan beberapa pulsa pendek dan tajam di seluruh output lead-nya untuk pemrosesan yang diperlukan atau memicu tahap relay yang dikonfigurasi dengan tepat

  • Sensor Jarak GP2D12



Penggunaan sensor GP2D12 ini tidak ada perlakuan khusus dalam  proses pembacaannya, sehingga apabila ada mikrokontroler yang sudah terdapat  ADC (Seperti Atmega8535) di dalam maka sensor jarak ini tinggal dihubungkan dan dibaca tegangan keluarannya. ATmega8535 merupakan salah satu jenis dari mikrokontroler AVR buatan ATMEL yang mempunyai 8 channel ADC (Analog to Digital Converter) dengan  resolusi 10bit. Maksudnya adalah mikrokontroler ini mampu untuk diberi masukan tegangan analog sampai 8 saluran secara bersamaan dengan ketelitian  sampai 10 bit, sehingga pemakaian sensor jarak GP2D12 pada mikrokontroler  ini maksimal adalah 8 buah.

Adapun prinsip kerja sensor sharp GP2D12 ini menggunakan prinsip pantulan sinar infra merah. Dalam aplikasi ini nilai tegangan keluran dari sensor yang berbanding terbalik dengan hasil pembacaan jarak dikomparasi dengan tegangan referensi komparator. Prinsip kerja dari rangkaian komparator sensor sharp GP2D12 adalah jika sensor mengeluarkan  tegangan melebihi tegangan referensi, maka keluaran dari komparator akan  berlogika rendah. Jika tegangan referensi lebih besar dari tegangan sensor maka  keluaran dari komparator akan berlogika tinggi. Selain menggunakan komparator,  untuk mengakases sensor jarak sharp GP2D12 dapat dengan menggunakan prinsip  ADC, atau dengan kata lain mengolah sinyal analog dari pembacaan sensor sharp  GP2D12 ke bentuk digital dengan bantuan pemrograman.

GP2D12 (Infrared Range Detector) adalah sensor jarak yang berbasikan  infra red, sensor ini dapat mendeteksi obyek dengan jarak 8 sampai 80 cm. Output  dari GP2D12 adalah berupa tegangan analog. Agar GP2D12 dapat berhubungan  dengan mikrokontroller di perlukan ADC ( Analog to Digital conventer ) yang  berfungsi untuk mengkonversi output dari GP2D12 yang berupa analog menjadi digital.

Grafik respon sensor GP2D12:






5. Sensor Kapasitif

Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.


6. Sensor Resistif

Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.


7.  Sound Sensor


Sensor suara adalah sebuah alat yang mampu mengubah gelombang sinusioda suara menjadi gelombang sinus energi listrik. Sensor suara ini digunakan untuk menghantarkan listrik berdasarkan pendeteksian suara untuk menghidupkan perangkat yang dihubungkan. Prinsip kerja sensor suara sederhana dan sangat mudah. Ia bekerja seperti telinga manusia. Modul sensor suara terdiri dari papan sirkuit kecil yang merupakan mikrofon 50 Hz-10 kHz dan beroperasi dengan modul detektor sensor untuk deteksi. Komponen sirkuit pemrosesan eksternal lainnya mengubah gelombang suara menjadi sinyal listrik.


Komponen perangkat keras penting lainnya adalah pembanding presisi tinggi LM393N. Perangkat ini wajib mendigitalkan sinyal listrik ke keluaran digital D0. Untuk menyesuaikan sensitivitas output digital D0, modul sensor suara berisi potensiometer bawaan. Sensor suara berisi mikrofon yang disebut mikrofon kondensor dengan 2 pelat bermuatan - satu adalah diafragma dan yang lainnya adalah pelat belakang. Pelat ini tampak seperti kapasitor. Jika sinyal suara (bertepuk tangan, membentak, mengetuk, alarm) atau sinyal audio bergerak melalui udara dan mengenai diafragma mikrofon, maka jarak antara 2 pelat bermuatan berubah karena getaran diafragma.

Oleh karena itu perubahan kapasitansi antara pelat ini menghasilkan sinyal listrik keluaran. Sinyal keluaran ini sebanding dengan sinyal suara masukan yang diterima mikrofon. Terakhir, sinyal keluaran diperkuat oleh amplifier dan didigitalkan untuk menentukan intensitas sinyal suara yang masuk.


5. Percobaan[Kembali]

 a) Prosedur[kembali]

  • Untuk membuat rangkaian ini, pertama, siapkan semua alat dan bahan yang bersangkutan, di ambil dari library proteus
  • Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak.
  • Tepatkan posisi letak nya dengan gambar rangkaian
  • Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh 
  • Lalu mencoba menjalankan rangkaian , jika tidak terjadi error, maka motor akan bergerak yang berarti rangkaian bekerja

    b) Rangkaian simulasi [kembali]


  1. Sensor Infrared
 

    Pertama dari sensor infrared, dimana ketika hewan terdeteksi oleh sensor maka logistednya bernilai 1, lalu maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai voltage follower maka tegangan input sama dengan tegangan out put jadi pada output tegangan pada op amp berniali 5 v juga, lalu tegangan mengalir ke melalui R3 lalu menuju ke kaki base transistor, tipe transistornya adalah self-bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan kunci pada perangkap akan terkunci secara otomatis.

2. Sensor Vibration


    Dimana ketika hewan terdeteksi getaran oleh sensor maka logistednya bernilai 1, lalu maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai voltage follower maka tegangan input sama dengan tegangan out put jadi pada output tegangan pada op amp berniali 5 v juga, lalu tegangan mengalir ke melalui R3 lalu menuju ke kaki base transistor, tipe transistornya adalah emitter stabilizer-bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan kunci pada perangkap akan terkunci secara otomatis

3. Sensor Touch


    Ketika terdeteksi sentuhan oleh sensor,  maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai non inverting amplifier, maka tegangan output sama dengan tegangan out sama dengan 
Vout=((Rf/Rin) +1) vin jadi pada output tegangan pada op amp bernialai 10v, lalu tegangan mengalir ke melalui R5 lalu menuju ke kaki base transistor, tipe transistornya adalah self bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis
 
4. Sensor Sound
 

    Ketika terdeteksi suara oleh sensor, maka logicstate berlogika 1 dan maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai non inverting amplifier, maka tegangan output sama dengan tegangan out sama dengan Vout=((Rf/Rin) +1) vin jadi pada output tegangan pada op amp bernialai 10v, lalu tegangan mengalir ke melalui R12 lalu menuju ke kaki base transistor, tipe transistornya adalah fixed bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis

5. Gas sensor


    Ketika sensor merespon CO2, maka sensor akan berlogika satu dan arus akan mengalir dari sensor menuju kaki non inverting op amp, tegangan akan terbaca sebesar 5 volt. Lalu Vout akan diumpankan ke Op-Amp dengan rangkaian Differential Amplifier dengan rumus Vout = Vo(non inverting) - Vo(inverting). Selanjutnya arus output rangkaian masuk menuju kaki base pada transistor, disini kami menggunakan rangkaian oemberian bias self bias, lalu arus menuju kaki emittor dan menuju ke ground. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis
6. Sensor Jarak (Analog)


    Ketika terdeteksi jarak lebih kecil dari 5cm oleh sensor, maka logicstate berlogika 1 dan maka menghasilkan tegangan output sebesar 2,47 volt, dikarenakan op amp bertindak sebagai non inverting dengan vref = +, dengan V1 = Vref = 2,47 volt dan V2 = 2,10 volt maka Vout = Aol x (V1-V2), dikarenakan Vsat op amp hanya ±15V, jadi Vout = ±Vsat-1. Jadi pada output tegangan pada op amp bernialai 14v, lalu tegangan mengalir ke melalui R1 lalu menuju ke kaki base transistor, tipe transistornya adalah fixed bias. Karena tegangan di kaki base transistor telah cukup maka transistornya menjadi aktif maka ada arus dari power suplay lalu menuju ke relay lalu ke kaki kolektor transistor menuju ke kaki emitor, dari kaki emitor menuju ke ground. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis



    c) Video Simulasi [kembali]

1. Touch Sensor & Sound Sensor




2. Gas Sensor




3.Infrared Sensor & Vibration Sensor



 
4. Sensor Jarak (Analog)


6. File Download[Kembali]

fil download [klik disini]

Download Library Sensor GAS MQ-7 CO2 [klik disini]
Download Library Sensor TOUCH [klik disini]
Download Library Sensor  INFRARED [klik disini]
Download Library Sensor GETAR SW-420 [klik disini]
Download Library Sensor SOUND [klik disini]

FILE DATASHEET:
Datasheet Voltmeter DC [klik disini]
Datasheet LED [klik disini]
Datasheet Dioda [klik disini]
Datasheet Resistor [klik disini]
Datasheet NPN [klik disini]
Datasheet Relay [klik disini]
Datasheet Buzzer [klik disini]
Datasheet DC Motor [klik disini]
Datasheet Potensiometer [klik disini]
Datasheet Sound Sensor [klik disini]
Datasheet Touch sensor [klik disini]
Datasheet SW-420 [klik disini]
Datasheet MQ-7 [klik disini]
Datasheet infrared [klik disini] 
Datasheet GP2D120 [klik disini]
Datasheet Battery [klik disini] 
Datasheet Op-Amp 741 [klik disini] 


Komentar

Postingan populer dari blog ini